应用统计方法解决模式识别问题的困难之一是维数问题,低维特征空间的分类问题一般比高维空间分类问题简单。因此,人们力图将特征空间进行降维,降维的一个基本思路是将d维特征空间投影到一条直线上,形成一维空间,这在数学上比较容易实现。问题的关键是投影之后原来线性可分的样本可能变为线性不可分。一般对于线性可分的样本,总能找到一个投影方向,使得降维后样本仍然线性可分。如何确定投影方向使得降维以后,样本不但线性可分,而且可分性更好(即不同类别的样本之间的距离尽可能远,同一类别的样本尽可能集中分布),就是Fisher线性判