本站所有资源均为高质量资源,各种姿势下载。
动态贝叶斯网络(Dynamic Bayesian Network,DBN)是贝叶斯网络的一种扩展,用于建模具有时间依赖性的动态系统。在DBN中,节点的状态不仅依赖于其父节点的状态,还依赖于前一个时间步的节点状态。
下面是一个用Matlab实现动态贝叶斯网络的简单示例代码:
classdef DBN
properties
numNodes % 节点数量
numStates % 每个节点的状态数量
prior % 初始状态概率 P(X_1)
transition % 状态转移概率 P(X_t | X_t-1)
emission % 观测概率 P(E_t | X_t)
end
methods
function obj = DBN(numNodes, numStates)
obj.numNodes = numNodes;
obj.numStates = numStates;
obj.prior = zeros(1, numStates);
obj.transition = zeros(numStates, numStates);
obj.emission = zeros(numStates, numNodes);
end
function obj = setPrior(obj, prior)
obj.prior = prior;
end
function obj = setTransition(obj, transition)
obj.transition = transition;
end
function obj = setEmission(obj, emission)
obj.emission = emission;
end
function likelihood = forward(obj, evidence)
T = size(evidence, 2);
likelihood = zeros(obj.numStates, T);
% 初始化t=1的前向概率
likelihood(:, 1) = obj.prior' .* obj.emission(:, evidence(1));
% 递推计算t=2:T的前向概率
for t = 2:T
likelihood(:, t) = (obj.transition' * likelihood(:, t-1)) .* obj.emission(:, evidence(t));
end
end
function posterior = backward(obj, evidence)
T = size(evidence, 2);
posterior = zeros(obj.numStates, T);
% 初始化t=T的后向概率
posterior(:, T) = ones(obj.numStates, 1);
% 递推计算t=T-1:-1:1的后向概率
for t = T-1:-1:1
posterior(:, t) = obj.transition * (posterior(:, t+1) .* obj.emission(:, evidence(t+1)));
end
end
function [prior, transition, emission] = learnParameters(obj, evidence)
T = size(evidence, 2);
% 初始化参数
prior = zeros(1, obj.numStates);
transition = zeros(obj.numStates, obj.numStates);
emission = zeros(obj.numStates, obj.numNodes);
% 估计初始状态概率
prior = obj.forward(evidence(:, 1));
% 估计状态转移概率
for t = 2:T
transition = transition + obj.forward(evidence(:, t)) * obj.backward(evidence(:, t-1))';
end
transition = bsxfun(@rdivide, transition, sum(transition, 1));
% 估计观测概率
for t = 1:T
emission(:, evidence(t)) = emission(:, evidence(t)) + obj.forward(evidence(:, t)) .* obj.backward(evidence(:, t));
end
emission = bsxfun(@rdivide, emission, sum(emission, 1));
end
end
end
使用示例:
% 创建一个有3个节点、每个节点有2个状态的DBN
dbn = DBN(3, 2);
% 设置初始状态概率
prior = [0.6, 0.4];
dbn = dbn.setPrior(prior);
% 设置状态转移概率
transition = [0.7, 0.3; 0.4, 0.6];
dbn = dbn.setTransition(transition);
% 设置观测概率
emission = [0.3, 0.7; 0.8, 0.2];
dbn = dbn.setEmission(emission);
% 根据观测数据学习参数
evidence = [1, 2, 2, 1];
[prior_estimated, transition_estimated, emission_estimated] = dbn.learnParameters(evidence);
这个代码实现了一个简单的动态贝叶斯网络类,其中包含了设置参数、前向传播、后向传播和参数学习等方法。你可以根据需要对该类进行扩展,添加更多的功能和方法。